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Abstract

The group U(n) is the set of all positive integers less than or equal to n and rela-

tively prime to n under multiplication modulo n. For n ≥ 1 and k an integer the set

Uk(n) = {x ∈ U(n)| x = kt+ 1 (mod n) for t ∈ Z} is a subgroup ofU(n). In this

article we show how to express the subgroups Uk(n) and factor groups U(n)/Uk(n)

of U(n) as a direct product of groups of the form Zm, the group of integers modulo

m under addition. Similar results are given for generalizations of Uk(n) and for sub-

groups of the form U(n)(k) = {xk| x ∈ U(n)}. Lastly, we give a construction that

proves every finite Abelian group is a subgroup of U(n) for infinitely many values of

n.

∗The results of this paper are part of Shahriyar Roshan Zamir’s 2019 Master’s thesis, with the same title, done
at the University of Minnesota Duluth under the supervision of Joseph A. Gallian.
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Introduction

Early in a course on abstract algebra one encounters the multiplicative group

U(n) of integers modulo n that consist of the set of integers less than or equal to n

and relatively prime to n. By definition, the order of U(n), |U(n)| = φ(n) where φ

is the Euler phi function. This group was introduced by Euler in 1761 and investigated

in detail by Gauss in 1801 in his famous book on number theory Disquisitiones Arith-

meticae, where he elucidated its structure as a direct product of groups of the form

Zm, the group of integers modulo m under addition.

In his classic book on algebra Lehrbuch der Algebra Heinrich Weber gave an exten-

sive treatment of the groups U(n) and described them as the most important examples

of finite Abelian groups. One of their striking properties proved later in this paper is

that every finite Abelian group is isomorphic to a subgroup ofU(n) for infinitely many

n. The textbook [4] uses the groupsU(n) and their subgroups to illustrate in a concrete

way the concepts of cyclic and noncyclic groups, isomorphisms, homomorphisms, in-

ternal and external direct products, cosets, Lagrange’s Theorem, factor groups, and the

Fundamental Theorem of Finite Abelian groups. This will be evident in this paper as

well.

The groups U(n) arise naturally in algebra, number theory, cryptography, and com-

puter science. They have been studied in four papers in this Magazine ([5], [2], [3],

[6]). Moreover, [1] provides the classification of the group of units of the ring of Gaus-

sian integers modulo n.

In [5] and [4] it is shown how to express U(n) and certain subgroups of U(n) as a

direct product of subgroups of U(n) and as a direct product of groups of the form Zm.

We provide similar results about the structures of some subgroups and factor (quotient)

groups of the groups U(n).

Central to our discussion is the following theorem of Gauss:

U(pn) ≈ Zpn−pn−1 for an odd prime p,

U(2n) ≈ Z2 ⊕ Z2n−2 for n ≥ 3,

U(4) ≈ Z2 and U(2) ≈ U(1) ≈ Z1 ≈ {0}.
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Combining this with the result in [4] (page 161) that for n = n1n2 · · ·nr, where

gcd(ni, nj) = 1 for i 6= j, we have

U(n) ≈ U(n1)⊕ U(n2)⊕ · · · ⊕ U(nr)

and we can easily write every U -group as a direct product of groups of the form Zm.

For example,

U(1400) = U(23 · 52 · 7) ≈ U(23)⊕ U(52)⊕ U(7) ≈ Z2 ⊕ Z2 ⊕ Z20 ⊕ Z6.

This example raises the question of how can we do similar things for certain subgroups

and factor groups of U(n). In the next section we show how for n ≥ 1 and an integer

k the subgroup of U(n) defined by

Uk(n) = {x ∈ U(n)| x ≡ kt+ 1 ( n) for t ∈ Z}

and the factor group U(n)/Uk(n) of U(n) can be expressed as a direct product of

groups of the form Zm. In later sections we do the same for two generalizations of

Uk(n) and for subgroups of U(n) of the form

U(n)(k) = {xk| x ∈ U(n)}.

Results related to Uk(n)

In [4] and [5] Uk(n) is defined only for positive divisors k of n. Although our

definition does not make that requirement, our first theorem shows that for questions

about the structure of groups of the form Uk(n) we may assume that k is a positive

divisor of n.

Theorem 1.1. Let n and k be positive integers. Then Uk(n) = Ugcd(n,k)(n).

Proof. Let gcd(n, k) = d, k = dh, and x ∈ Uk(n). Then x ≡ kt+ 1 (mod n) im-

plies x ≡ d(ht) + 1 (mod n), which is inUd(n). For x ∈ Ud(n) we have x ≡ dt′ + 1

(mod n). We know there exists integers s and t such that sk + tn = d. Hence x =

(sk + tn)t′ + 1 ≡ k(st′) + 1 (mod n) and therefore x ∈ Uk(n).

Corollary 1.2. For any positive integer n and an odd integer h we have U2h(n) =

Uh(n).
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Proof. If n is odd then gcd(2h, n) = gcd(h, n) and by Theorem 1.1 we getU2h(n) =

Ugcd(2h,n)(n) = Ugcd(h,n)(n) = Uh(n). Now suppose n is even. If 2h does not di-

vide n, by Theorem 1.1 we get U2h(n) = Ugcd(2h,n)(n). Since n is even the greatest

common divisor of 2h and n must equal 2h′ for some odd h′. Hence we may assume

2h divides n. It follows by definition that U2h(n) ⊆ Uh(n). Let x ∈ Uh(n). Since

h divides n we have that x = hk + 1 where x is smaller than n. If k is odd, then x

is even and hence not relatively prime to n, so k has to be even. Let k = 2t. Then

x = 2ht+ 1 and therefore x ∈ U2h(n).

Theorem 1.1 shows any factor of k in Uk(n) that is relatively prime to n can be

“canceled." Corollary 1.2 shows if k has exactly one factor of 2 then it can be “can-

celed" as well.

U24(30) = {1, 19, 13, 7} = {1, 7, 13, 19} = U6(30) = U3(30)

U15(70) = {1, 31, 61, 51, 11, 41} = {1, 11, 31, 41, 51, 61} = U5(70) = U10(70)

The above examples illustrate the utility of using cancellation. For U15(70) we

generate the set by starting with 1 and successively add 15 to the previous element.

This results in terms that exceed the modulus and elements that are not in increasing

order. In contrast, for U5(70) or U10(70) we generate the elements without using mod

arithmetic and the elements are in increasing order.

Noting that U5(70) = U10(70) demonstrates the interesting fact that Corollary 1.2

is useful in opposite ways depending on the parity of n. When n is odd cancelling the

2 offers the same advantages as Theorem 1.1. When n is even it is more efficient to not

cancel the 2 because in examining the elements of the form ht+ 1 every other element

is even and therefore is not in Uh(n) = U2h(n). So, one needs only to examine half

as many integers for U2h(n). This observation is often overlooked by students.

We next classify the structure of subgroups of the form Uk(n) and their respective

factor groups when n is a power of a prime. After that we shift our attention to the

general case of any positive integers n and k. For the proof of Lemma 1.3 and Propo-

sition 1.4, we only need to find the order of Uk(n) and use the fact that every subgroup

and every factor group of a cyclic group is cyclic.

Lemma 1.3. For an odd prime p and 1 ≤ k ≤ m we have Upk(p
m) ≈ Zpm−k .
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Proof. Note that Upk(p
m) = {1, pk + 1, 2pk + 1, 3pk + 1 . . . , (pm−k − 1)pk + 1}

and since U(pm) is cyclic, the result follows.

For pm = 115 and pk = 113, Lemma 1.3 gives U113(11
5) ≈ Z115−3 ≈ Z121.

Note that for k = m we get the subgroup consisting of the identity only. That is,

U115(11
5) ≈ {1} ≈ Z1.

It is worth mentioning that for an odd prime p, Lemma 1.3 and the formula

|U(pm)| = (p − 1)pm−1 give us the attractive result that the Sylow p-subgroup

of U(pm) is Up(pm).

Proposition 1.4. For an odd prime p and 1 ≤ k ≤ m, we have U(pm)/Upk(p
m) ≈

Zpk−1(p−1).

Proof. Since U(pm) is cyclic, we only need to find the order of U(pm)/Upk(p
m),

which is |U(pm)/Upk(p
m)| =

pm−1(p− 1)

pm−k
= pk−1(p− 1).

Suppose in the previous example we wanted to find the structure ofU(115)/U113(11
5).

By Proposition 1.4 we have U(115)/U113(11
5) ≈ Z113−1(11−1) ≈ Z1210. Notice how

much faster this was compared to having to do the calculations by hand. Also note the

structure of the factor group depends only on k.

Lemma 1.5. Let n ≥ 1 and 2 ≤ i ≤ n. Then U2(2
n) = U(2n) and U2i(2

n) ≈

Z2n−i .

Proof. The first assertion follows by the definition. For the second part observe

that |U2i(2
n)| = 2n−i because U2i(2

n) = {1, 2i + 1, . . . , (2n−i − 1)2i + 1}. Since

U2i(2
n) is a subgroup of U(2n) ≈ Z2 ⊕ Z2n−2 , we know that U2i(2

n) is isomorphic

to either Z2n−i or Z2 ⊕ Z2n−i−1 where 2 ≤ i. This implies the subgroup U2i(2
n) has

either one or three elements of order 2, respectively. We will show it has one. Note the

group U(2n) has exactly three elements of order 2, namely 2n − 1 and 2n−1 ± 1. If

2n − 1 ∈ U2i(2
n) then 2n − 1 = k · 2i + 1 for some integer k. This is a contradiction

since the left hand side is −1 mod 2i and right hand side is 1 mod 2i. So U2i(2
n) has

only one element of order 2, and therefore is isomorphic to Z2n−i .

The following result about factor groups of finite Abelian groups will be helpful for

our results about factor groups of U -groups.
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Proposition 1.6. Let G ≈ Zpn1
1
⊕ · · · ⊕ Zpnk

k
and H be a subgroup of G such

that |H| = pn1−m1
1 · · · pnk−mk

k where pi is prime and 0 ≤ mi ≤ ni for all i. Then

G/H ≈ Zpm1
1
⊕ · · · ⊕ Zpmk

k
.

Proposition 1.6 follows from the fact that ifG is k-generated thenG/H is generated

by the canonical image of the generators of G. Thus the number of components in a

cyclic group decomposition of a factor group of any group is less than or equal to the

number of components in the cyclic group decomposition of that group.

Proposition 1.7. For n = i we have U(2n)/U2i(2
n) ≈ Z1. For n = 2 and i = 1 we

have U(4)/U2(4) ≈ Z1. For 2 ≤ i < n we have U(2n)/U2i(2
n) ≈ Z2 ⊕ Z2i−2 .

Proof. The first two assertions are obvious. So we assume that 2 ≤ i < n. Observe

that |U(2n)/U2i(2
n)| = 2i−1. By Proposition 1.6, U(2n)/U2i(2

n) is isomorphic to

either Z2i−1 or Z2 ⊕ Z2i−2 and therefore it has either one or three elements of order

2. We will show the latter is the case by exhibiting two elements of order 2. Let H =

U2i(2
n). Because ((2n − 1)H)2 = (−1H)2 = H we know that |(2n − 1)H| = 1

or 2. If |(2n − 1)H| = 1, then 2n − 1 ∈ H and therefore 2n − 1 = 2i · k + 1. But

that’s impossible since the left side is −1 (mod 2i) and the right side is 1 (mod 2i).

Similarly, we can show that |(2n−1 − 1)H| = 2.

Theorem 1.8. Let p1, . . . , pk be distinct primes. For 1 ≤ mi, 0 ≤ ji ≤ mi, 1 ≤ i ≤

k, we have U
p
j1
1 ···p

jk
k

(pm1
1 · · · p

mk
k ) ≈ U

p
j1
1
(pm1

1 )⊕ · · · ⊕ U
p
jk
k

(p
mk
k ).

Proof. We know from [4] (p.160) that U(pm1
1 · · · p

mk
k ) is isomorphic to U(pm1

1 ) ⊕

· · · ⊕ U(p
mk
k ) under the mapping γ(x) = (x (mod pm1

1 ), . . . , x (mod pmk
k )). We

will show the same mapping is the required isomorphism. For convenience, let

a = pm1
1 · · · p

mk
k and b = pj11 · · · p

jk
k . If b is divisible by 2 but not 4, then by

Corollary 1.2 we can ignore that factor of 2 in b. So, we may assume that if b is

even, then b is divisible by 4. The restriction of the domain of γ from U(a) to

Ub(a) is a well-defined, one-to-one and operation preserving mapping from Ub(a)

to U
p
j1
1
(pm1

1 ) ⊕ · · · ⊕ U
p
jk
k

(p
mk
k ) because γ is an isomorphism. We need only to

show this mapping is onto. Since γ is a one-to-one mapping, it suffices to show

that γ(Ub(a)) is into U
p
j1
1
(pm1

1 ) ⊕ · · · ⊕ U
p
jk
k

(p
mk
k ) and they have the same or-

der. It follows, from the definition and Corollary 1.2, that the order of Ub(a) is
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a

b
= pm1−j1

1 · · · pmk−jk
k . (In the case of b even, the previous assumption of b being

divisible by 4 was necessary for this and the next claim.)

By definition we have:

|U
p
j1
1
(pm1

1 )| = pm1−j1
1

...

|U
p
jk
k

(p
mk
k )| = p

mk−jk
k .

Therefore the order of U
p
j1
1
(pm1

1 )⊕ · · · ⊕ U
p
jk
k

(p
mk
k ) = pm1−j1

1 · · · pmk−jk
k . To show

the into part, let x ∈ Ub(a). Note gcd(pi, x) = 1 for all i since gcd(a, x) = 1. More-

over γ(x) = (x (mod pm1
1 ), · · · , x (mod pmk

k )). To show γ(x) is in U
p
j1
1
(pm1

1 ) ⊕

· · · ⊕ U
p
jk
k

(p
mk
k ), we mod the i-th component by pjii . This yields:

(x (mod pm1
1 ) (mod pj11 ), · · · , (x (mod pmk

k ) (mod pjkk )) =

(x (mod pj11 ), · · · , x (mod pjkk )) = (1, · · · , 1)

since x ≡ 1 (mod b).

The following corollaries are direct consequences of Theorem 1.8, Lemma 1.3, and

Lemma 1.5.

Corollary 1.9. Let k, k′ be positive integers such that Ugcd(k,n)(n) = Ugcd(k′,n)(n).

Then gcd(k, n) = gcd(k′, n).

Corollary 1.10. If |Uk(n)| = pm for an odd prime p and 1 ≤ m then Uk(n) ≈ Zpm .

Corollary 1.11. Let p1, . . . , pk be distinct odd primes. For 1 ≤ ji ≤ mi and 1 ≤ i ≤

k, we haveU
p
j1
1 ···p

jk
k

(pm1
1 · · · p

mk
k ) ≈ Z

p
m1−j1
1 ···pmk−jk

k

andU
p
j1
1 ···p

jk
k

(pm1
1 · · · p

mk
k ) =

〈pj11 · · · p
jk
k + 1〉.

Proof. The first part follows directly from Theorem 1.8 and Lemma 1.3. To see that

pj11 · · · p
jk
k + 1 is a generator forU

p
j1
1 ···p

jk
k

(pm1
1 · · · p

mk
k ) observe that the isomorphism

from U
p
j1
1 ···p

jk
k

(pm1
1 · · · p

mk
k ) to Z

p
m1−j1
1 ···pmk−jk

k

given by γ(x) = x mod pj11 · · · p
jk
k

maps pj11 · · · p
jk
k + 1 to a generator of Z

p
m1−j1
1 ···pmk−jk

k

.

Corollary 1.12. For 1 ≤ k ≤ n, we haveUk(n) = U(n) if and only if gcd(n, k) = 1

or 2.
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Proof. If gcd(k, n) = 1 by Theorem 1.1 we get Uk(n) = Ugcd(k,n)(n) = U1(n) =

U(n). If gcd(k, n) = 2, it follows from Theorem 1.1 and Corollary 1.2 that Uk(n) =

Ugcd(k,n)(n) = U2(n) = U(n).

Now suppose Uk(n) = U(n). From Theorem 1.1 and Corollary 1.2 we get:

Uk(n) = Ugcd(k,n)(n) = U(n) = U2(n) = Ugcd(2,n)(n).

It follows from Corollary 1.9 that gcd(k, n) = gcd(2, n). This implies gcd(k, n) =

1 or 2.

Example 1.13. To demonstrate how we can use Theorem 1.8, suppose we want

to express U140(1800) as a direct product of groups of the form Zm. We know

U140(1800) = U20(1800) = U20(8 · 9 · 25) and by Theorem 1.8, Lemma 1.3 and

Lemma 1.5 we get U20(1800) ≈ U4(8)⊕ U(9)⊕ U5(25) ≈ Z2 ⊕ Z6 ⊕ Z5.

Theorem 1.14. Let n > 1 be odd and k a divisor of n. Then U(n)/Uk(n) ≈ U(k).

Proof. Let n = pn11 · · · p
nj
j and k = pm1

1 · · · p
mj
j . Consider the homomorphism

γ : U(n) → U(k) given by γ(x) = x (mod k). By definition, Ker(γ) = Uk(n),

so the First Group Isomorphism Theorem gives us U(n)/Uk(n) ≈ γ(U(n)). More-

over, γ(U(n)) is a subgroup of U(k). We will show |γ(U(n))| = |U(k)|. We

know that |U(k)| = φ(k) = pm1−1
1 (p1 − 1) · · · pmj−1

j (pj − 1). By Theorem 1.8

and Lemma 1.3 we get |γ(U(n))| = |U(n)/Uk(n)| =
|U(n)|
|Uk(n)|

=

pn1−11 (p1 − 1) · · · pnj−1j (pj − 1)

pn1−m1 · · · pnj−mj
= pm1−1

1 (p1 − 1) · · · pmj−1
j (pj − 1).

Theorem 1.15. If n is even and k is divisible by 4, then U(n)/Uk(n) ≈ U(k).

Proof. The argument is identical to the proof Theorem 1.14. To find the order of

U(n)/Uk(n) we use Theorem 1.8, Lemma 1.3, and Lemma 1.5.

Theorem 1.16. If n is even and k = 2h where h is odd, then U(n)/Uk(n) ≈ U(h).

Proof. We know from Corollary 1.2 that Uk(n) = Uh(n). We change the mapping in

Theorem 1.14 to γ : U(n)→ U(h) where γ(x) = x (mod h). The rest of the proof

is an order argument identical to the one in the proof of Theorem 1.14.
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Generalizations to U±k(n) and Uk,H(n)

Does every subgroup of U(n) have the form Uk(n) where k is a divisor of

n? The answer is no. For example U(36), which is isomorphic to Z2 ⊕ Z6, has a

subgroup isomorphic to Z2 ⊕ Z2. But looking at cases reveals that for no divisor k of

36 do we get Uk(36) ≈ Z2 ⊕ Z2. This motivates our next theorem. It will allow us

to give a description of the elements of U(36) that form the subgroup isomorphic to

Z2 ⊕ Z2.

Theorem 1.17. For n ≥ 1 and a positive integer k, the set

U±k(n) = {x ∈ U(n)| x ≡ kt± 1 (mod n) for t ∈ Z}

is a subgroup of U(n).

Proof. It suffices to show that U±k(n) is closed (see Theorem 3.3 in [4]). If a, b ∈

U±k(n) then ab mod n ≡ (a mod n)(b mod n) ≡ (±1)(±1) ≡ ±1.

A few examples of U±k(n) are:

U±9(36) = {1, 17, 19, 35}

U±11(33) = {1, 10, 23, 32}

U±5(45) = {1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} .

The first example answers our question about a non-cyclic subgroup of order four

in U(36), since U±9(36) ≈ Z2 ⊕ Z2. As was the case with Uk(n), we don’t need

to know all of the elements of U(n) to find the elements of U±k(n). The algorithm

is similar. Add ±1 to all non-negative integer multiples of k and then mod by n and

check to see if the result is relatively prime to n. Continue in this fashion until you

reach 1. For example, 1 · 9± 1 (mod 36) are not relatively prime to 36 so we discard

them and 4 · 9± 1 ≡ 1, 35 (mod 36) so we are done.

Theorem 1.18. Let n = st with n ≥ 3 and gcd(s, t) = 1. Then U±s(n) ≈ Us(n)×

{1, n− 1} ≈ U(t)⊕ Z2.

Proof. From [4] we know if G = H ×K, the internal direct product of H and K,

then G = H ⊕K. By observation U±s(n) = Us(n) × {1,−1}, where −1 ≡ n −
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1 (mod n). (A detailed and more general proof of why the two subgroups U±s(n) and

Us(n)× {1,−1} are equal is given in Theorem 1.19.) Since gcd(s, t) = 1, it follows

that Us(n) = Us(st) ≈ U(t), where the last isomorphism is a result from [5]. (See

also [4] p.160.) Moreover, {1,−1} ≈ Z2. Therefore U±s(n) ≈ U(t)⊕ Z2.

One might wonder if U±k(n) = Uk(n)× {1,−1} for all 1 ≤ k ≤ n. The answer

is “yes" in all non-trivial cases. In Corollary 1.12 we proved that Uk(n) = U(n) if

and only if gcd(k, n) = 1 or 2. So, we ignore this case.

Theorem 1.19. For 1 ≤ k ≤ n, and Uk(n) 6= U(n), we have U±k(n) = Uk(n) ×

{1,−1} ≈ Ugcd(n,k)(n)⊕ Z2.

Proof. Suppose Uk(n) 6= U(n). It suffices to show U±k(n) = Uk(n) × {1,−1}.

(The rest follows from Theorem 1.1.) Let A = U±k(n) and B = Uk(n)× {1,−1}.

The assumption that Uk(n) 6= U(n) allows for set B to exist. Otherwise, the no-

tion of internal direct product would not make sense. Because both A and B are sub-

groups of U(n), it suffices to show A and B are subsets of each other. For x ∈ A, if

x = kt+ 1, we are done. If x = kt− 1 then x = −(k(−t) + 1), which is an element

of B. Now let x ∈ B. If x = (kt + 1)(1) then we are done. If x = (kt + 1)(−1)

then x = k(−t)− 1, which is an element of A. Finally we have U±k(n) = Uk(n)×

{1,−1} ≈ Ugcd(n,k)(n)⊕ Z2.

The following example demonstrates how the above results taken together easily

dispatch problems that appear to be intimidating. As stated in [4] “theorems are labor

saving devices."

Example 1.20. Let’s look at the case of n = 23 · 33 · 52 · 11 = 59400 and k = 22 · 3 ·

5 · 13 = 780 and find the structure of U±780(59400). Note that gcd(59400, 780) =

60, implies U±780(59400) ≈ U780(59400) ⊕ Z2 ≈ U60(59400) ⊕ Z2 ≈ U4·3·5(8 ·

27 · 25 · 11)⊕ Z2 ≈ U4(8)⊕ U3(27)⊕ U5(25)⊕ U(11)⊕ Z2 ≈ Z2 ⊕ Z9 ⊕ Z5 ⊕

Z10 ⊕ Z2 ≈ Z45 ⊕ Z10 ⊕ Z2 ⊕ Z2.

We finish this section with a generalization of U±k(n). The following are alternate

definitions for the subgroups Uk(n) and U±k(n):
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Uk(n) = {x ∈ U(n)| x mod k ∈ {1}}

U±k(n) = {x ∈ U(n)| x mod k ∈ {1,−1}} .

We generalize these by replacing {1} or {1,−1} with any other subgroup H of

U(n).

Theorem 1.21. For n > 1, let k be a positive divisor of n and H be a subgroup of

U(n). The set Uk,H(n) = {x ∈ U(n)| x mod k ∈ H} is a subgroup of U(n).

Proof. The proof follows from the closure of H .

The advantage of using these subgroups is that by picking certain positive divisors

k of n and a subgroup H of U(n) we are able to construct a new subgroup of U(n)

by changing the divisor k or the subgroup H (or both) we can create more subgroups

of U(n).

Example 1.22. Let n = 80, k = 10 and H = {1, 9}. Then we have U10,{1,9}(80) =

{x ∈ U(80)| x = 10t+ 1 or x = 10t+ 9, t ∈ Z}. For t = 0, we get H . For t = 1

we get 11 and 19. For t = 2 we get 21 and 29 and so on. Notice that we need only to

check up to t = 8. Finally, we haveU10,{1,9}(80) = {1, 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59,

61, 69, 71, 79}, which is indeed a subgroup of U(80).

Our results about when U±k(n) = Uk(n)× {1,−1} raises the question of when

Uk,H(n) = Uk(n)×H .

Theorem 1.23. Let n > 1, k a positive divisor of n, andH a subgroup of U(n). Then

Uk,H(n) = Uk(n)×H if and only if Uk(n) ∩H = {1}.

Proof. SupposeUk(n) ∩H = {1}. It suffices to showUk,H(n) = Uk(n)H since the

rest follows from the definition of internal direct product. For x ∈ Uk(n)H , we have

that for some h ∈ H , x ≡ (kt + 1)h (mod n) ≡ k(th) + h (mod n), which is an

element of Uk,H(n). For x ∈ Uk,H(n) we have x = kt + h for some h ∈ H . The

following chain of equalities shows x ∈ Uk(n)H :

x = (kt+ h)1 = (kt+ h)h−1h = (k(th−1) + 1)h.
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Thus x has the desired form.

If Uk,H(n) = Uk(n) × H , then by definition of internal direct product we get

Uk(n) ∩H = {1}.

Results about U(n)(k) and a general result about U(n) groups

We now ask the following question: Is every subgroup of a U(n) expressible in

the form U±k(n) or Uk(n)? The answer is again “no." For instance, for U(252) ≈

Z2 ⊕ Z6 ⊕ Z6 there is no divisor k of 252 such that Uk(252) or U±k(252) yields the

subgroup of U(252) isomorphic to Z2 ⊕ Z2 ⊕ Z2. This question motivates another

way of producing subgroups in a U(n) group.

Definition 1.24. Let n > 1 and k be any integer. We define

U(n)(k) =
{
xk| x ∈ U(n)

}
.

That U(n)(k) is a subgroup of U(n) follows from closure of U(n)(k). If k doesn’t

divide |U(n)| = φ(n), this subgroup can be viewed as the image of the automorphism

given by γ(x) = xk. If k is a divisor of φ(n), γ defines a homomorphism from U(n)

to itself with kernel:

Ker(γ) =
{
x ∈ U(n)| xk = e

}
.

Consequently, by the First Isomorphism Theorem for groups we haveU(n)/Ker(γ) ≈

U(n)(k).

Example 1.25. Consider U(13) = {1, 5, 7, 12} and k = 2. Then squaring each ele-

ment we get {1, 12, 12, 1} so U(13)(2) = {1, 12}.

Our next result is the counterpart of Uk(n) = Ugcd(n,k)(n).

Proposition 1.26. For n > 1 and any integer k, U(n)(k) = U(n)(gcd(φ(n),k).

Proof. Let gcd(φ(n), k) = d and k = dh. Since U(n)(d) and U(n)(k) are both

subgroups of U(n), we only need to show they are subsets of each other. Clearly

U(n)(k) ⊆ U(n)(d) since xhd = (xh)d. Now let xd ∈ U(n)(d). We know d = t1k +

t2φ(n), which implies xd = xt1k+t2φ(n) = xt1k · xt2φ(n) = (xt1)k ∈ U(n)(k).
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Proposition 1.26 allows us to assume the superscript k is always a divisor of φ(n).

Example 1.27. Consider U(252) = U(4 · 9 · 7) ≈ U(4) ⊕ U(9) ⊕ U(7) ≈ Z2 ⊕

Z6 ⊕Z6. Direct calculations show thatU(252)(3) = {1, 55, 71, 125, 127, 181, 197, 251}

and every non-identity element has order two. Thus, we haveU(252)(3) ≈ Z2 ⊕Z2 ⊕

Z2.

Notice that in the previous example raising the elements of U(252) to the third

power is equivalent to multiplying the elements of Z2 ⊕ Z6 ⊕ Z6 by 3 so, in order to

find the structure of the latter, all we have to do is trace the generator of each compo-

nent, namely 1, after being multiplied by 3. In the first component, Z2, 3 mod 2 is 1

therefore we get Z2. In the next two Z6 components, 1 goes to 3 which yields a Z2.

To summarize, finding the structure of U(n)(k) is equivalent to tracing 1 in each term

in the cyclic group decomposition of U(n). This is the main idea of Theorem 1.28.

Theorem 1.28. Let n = pm1
1 · · · p

mj
j for distinct odd primes pi and positive integers

mi. Then U(pm1
1 · · · p

mj
j )(k) ≈ Zd1 ⊕ · · · ⊕ Zdj where di =

φ(pmi
i )

gcd(φ(pmi
i ), k)

for all

1 ≤ i ≤ j.

Proof. We know that U(n) ≈ Zφ(pm1
1 ) ⊕ · · · ⊕ Zφ(pmj

j )
. Raising every elements in

U(n) to the k-th power is equivalent to multiplying all the elements of Zφ(pm1
1 ) ⊕

· · · ⊕ Z
φ(p

mj
j )

by k. This is a mapping of cyclic groups to themselves. So, one

needs only to trace where the generator, 1, of each cyclic component is mapped.

Observe that 1 goes to k for each term. Hence Zφ(pmi
i ) is mapped to Zdi where

di =
φ(pmi

i )

gcd(φ(pmi
i ), k)

.

Corollary 1.29. Let n = 2bpm1
1 · · · p

mj
j for distinct odd primes pi and positive inte-

gers b and mi for all i. Define di =
φ(pmi

i )

gcd(φ(pmi
i ), k)

for all 1 ≤ i ≤ j. Then

1. U(2 · pm1
1 · · · p

mj
j )(k) ≈ U(pm1

1 · · · p
mj
j )(k) ≈ Zd1 ⊕ · · · ⊕ Zdj .

2. U(2bpm1
1 · · · p

mj
j )(k) ≈ Z2 ⊕ Zd1 ⊕ · · · ⊕ Zdj if b = 2 and k is odd.

3. U(2bpm1
1 · · · p

mj
j )(k) ≈ Zd1 ⊕ · · · ⊕ Zdj if b = 2 and k is even.

4. U(2bpm1
1 · · · p

mj
j )(k) ≈ Z2 ⊕ Z2b−2 ⊕ Zd1 ⊕ · · · ⊕ Zdj if b ≥ 3 and k is odd.
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5. U(2bpm1
1 · · · p

mj
j )(k) ≈ Z 2b−2

gcd(2b−2,k)

⊕ Zd1 ⊕ · · · ⊕ Zdj if b ≥ 3 and k is even.

Proof. For b = 1 observe that U(2 · pm1
1 · · · p

mj
j ) ≈ U(pm1

1 · · · p
mj
j ). If b = 2, we

have U(n) ≈ Z2 ⊕ Zφ(pm1
1 ) ⊕ · · · ⊕ Zφ(pmj

j )
. If k is odd, the additional Z2 term

doesn’t change and the rest is identical to Theorem 1.28. If k is even, the first Z2

is gone because we are mapping 1 to k mod 2 which yields zero. For b ≥ 3 we get

U(n) ≈ Z2 ⊕ Z2b−2 ⊕ Zφ(pm1
1 ) ⊕ · · · ⊕ Zφ(pmj

j )
. For odd k, the term Z2 ⊕ Z2b−2

stays the same. For even k, the first Z2 is gone. We need to find the order of 1 · k = k

in the Z2b−2 term to find the structure of the first component of the direct product. But

that order is exactly 2b−2

gcd(2b−2,k)
. Since every subgroup of a cyclic group is cyclic, the

result follows.

The previous theorem and its corollary help us find the explicit group elements of

various subgroups with desired structures, including p-Sylow subgroups.

Example 1.30. Let n = 33 · 7 · 19. The cyclic group decomposition of U(n) is

Z6 ⊕ Z18 ⊕ Z18. By Theorem 1.28 we have U(n)(9) ≈ Z 6
gcd(6,9)

⊕ Z 18
gcd(18,9)

⊕

Z 18
gcd(18,9)

≈ Z2 ⊕ Z2 ⊕ Z2. Therefore, after raising every element of U(n) to the

9th power the elements that are left form the Sylow 2-subgroup of U(n). Define γ :

U(n)→ U(n) by γ(x) = x9. We claim Ker(γ) is the Sylow 3-subgroup of U(n).

By the First Isomorphism Theorem observe that U(n)/Ker(γ) ≈ (U(n))(9) ≈

Z2 ⊕ Z2 ⊕ Z2, which implies Ker(γ) is the set of all elements of U(n) whose

orders divide 9 and is isomorphic to Z3 ⊕ Z9 ⊕ Z9, which is the structure of the

3-Sylow subgroup of U(n). Hence Ker(γ) ≈ Z3 ⊕ Z9 ⊕ Z9.

The group U(n)(2) is another way to obtain the Sylow 3-subgroup of U(n). Observe,

by Theorem 1.28, that U(n)(2) ≈ Z 6
gcd(6,2)

⊕ Z 18
gcd(18,2)

⊕ Z 18
gcd(18,2)

≈ Z3 ⊕ Z9 ⊕

Z9.

Example 1.31. Suppose in the previous example we wanted to produce the elements

of U(n) that form a subgroup isomorphic to Z6 ⊕ Z2. To this end let H = U7·19(3
3 ·

7 · 19)(9) and K = U33·19(3
3 · 7 · 19). Using Theorem 1.8 it’s clear that U7·19(3

3 ·

7 · 19) ≈ Z18 and by Theorem 1.28 we have H = U7·19(3
3 · 7 · 19)(9) ≈ Z2. Noting

that K ≈ Z6, we let L = H ×K. Since H ∩K = {1} we have L ≈ H ⊕K ≈

Z2 ⊕ Z6.
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For completeness, we conclude this paper by proving that every finite Abelian group

is a subgroup of a U -group thereby offering support for Weber’s assertion in the intro-

duction that the U -groups are the most important examples of finite Abelian groups.

We know of no proof of the fact that does not use number theory in an essential way.

Indeed, we will use the Dirichlet’s theorem [7], also called Dirichlet’s prime number

theorem, which states for any two relatively prime integer a and b, there are infinitely

many primes of the form q = an+ b where n is a non-negative integer.

Theorem 1.32. Every finite Abelian group is isomorphic to a subgroup of a U -group.

Proof. Let G be a finite Abelian group. By the Fundamental Theorem of Finite

Abelian Groups we have G ≈ Zpa11 ⊕ · · · ⊕ Zpai1 ⊕ · · · ⊕ Zpr1s ⊕ · · · ⊕ Zprhs where

pi’s are distinct primes and we have arranged the subscripts such that a1 is the largest

exponent of p1 and r1 is the largest exponent of ps. Let a = pa11 and b = 1 in the

statement of Dirichlet’s theorem. Then there are infinitely many primes of the form

q = pa11 n+ 1 which implies pa11 divides φ(q) and therefore U(q) has a subgroup of

order pa11 . We can find i distinct primes, q1, . . . , qi, of the form pa11 n + 1, each of

which will have a subgroup of order pa11 and since that was the largest power of p1,

we can get every subgroup of a smaller power of p1. Repeating this process for each

prime up to ps and multiply all these primes and we obtain the desired n.
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